Degree Project E in Mathematics
- Date: –16:15
- Location: Ångströmlaboratoriet, Lägerhyddsvägen 1 Å64119, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala
- Lecturer: Mikolaj Cuszynski (Uppsala)
- Website
- Organiser: Volodymyr Mazorchuk
- Contact person: Volodymyr Mazorchuk
- Seminarium
title: Perron-Frobenius theorem and Z_{>=0}[S_3]-semimodules
abstarct:
Presentation of Master Thesis.
In this thesis, Perron-Frobenius theorem which in its most general form states that the spectral radius of a non-negative real square matrix is an eigenvalue with a non-negative eigenvector, is proven.
Related properties are derived, in particular the Collatz–Wielandt formula and a general form of non-negative idempotent matrices. Furthermore, a classification of $\mathbb{Z}_{\geq 0}[S_2]$-semimodules with Kazhdan-Lusztig basis and elementary $\mathbb{Z}_{\geq 0}[S_3]$-semimodules with Kazhdan-Lusztig basis, is given.